Deep AI and Neural Networks

Tuesday, October 27, 2020

- PDT
PRO WORKSHOP (AI): Get Started with Time Series Forecasting Using Machine Learning
Join on Hopin
Karl Weinmeister
Karl Weinmeister
Google, Developer Advocacy Manager

Predicting the future has always been a fascinating topic. Now we have AI tools and techniques that can help us do it better than ever before. In this session, we'll cover the fundamentals of solving time-series problems with AI, and show how it can be done with popular data science tools such as Pandas, TensorFlow, and the Google Cloud AI Platform.

We'll start with how to visualize, transform, and split time-series data for use in an ML model. We'll also discuss both statistical and machine learning techniques for predictive analytics. Finally, we'll show how to train a demand forecasting model in the cloud and make predictions with it. Attendees can access Jupyter notebooks after the session to review the material in more detail.

Thursday, October 29, 2020

- PDT
KEYNOTE (AI): John Snow Labs -- State of the Art Natural Language Processing at Scale
Join on Hopin
David Talby
David Talby
John Snow Labs, CTO

NLP is a key component in many data science systems that must understand or reason about text. This hands-on tutorial uses the open-source Spark NLP library to explore advanced NLP in Python. Spark NLP provides state-of-the-art accuracy, speed, and scalability for language understanding by delivering production-grade implementations of some of the most recent research in applied deep learning. It's the most widely used NLP library in the enterprise today. You'll edit and extend a set of executable Python notebooks by implementing these common NLP tasks: named entity recognition, sentiment analysis, spell checking and correction, document classification, and multilingual and multi domain support. The discussion of each NLP task includes the latest advances in deep learning used to tackle it, including the prebuilt use of BERT embeddings within Spark NLP, using tuned embeddings, and 'post-BERT' research results like XLNet, ALBERT, and roBERTa. Spark NLP builds on the Apache Spark and TensorFlow ecosystems, and as such it's the only open-source NLP library that can natively scale to use any Spark cluster, as well as take advantage of the latest processors from Intel and Nvidia. You'll run the notebooks locally on your laptop, but we'll explain and show a complete case study and benchmarks on how to scale an NLP pipeline for both training and inference.